

# COMPSCI 389 Introduction to Machine Learning

#### **Basics and Reward Design**

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

## Review

• An RL agent's goal is to find a policy that maximizes the expected return (the expected sum of rewards it receives).

## Gridworlds

- Gridworlds are common examples used when learning about RL algorithms.
- They are not important problems, but rather tools for understanding RL and RL agent behavior.
- Gridworlds range in difficulty from trivial to nearly impossible.

• Each cell in the grid is a state.



- Each cell in the grid is a state.
  - They could be numbered, 1, 2, 3, ...

| 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 |
| 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 |

- Each cell in the grid is a state.
  - They could be numbered, 1, 2, 3, ...
  - They could be represented as (x, y) coordinates
- RL includes problems with **continuous states** (e.g., joint angles, blood glucose, etc.).
- This problem has discrete states.

| (1,1) | (2,1) | (3,1) | (4,1) | (5,1) |
|-------|-------|-------|-------|-------|
| (1,2) | (2,2) | (3,2) | (4,2) | (5,2) |
| (1,3) | (2,3) | (3,3) | (4,3) | (5,3) |
| (1,4) | (2,4) | (3,4) | (4,4) | (5,4) |
| (1,5) | (2,5) | (3,5) | (4,5) | (5,5) |

- Each cell in the grid is a state.
  - They could be numbered, 1, 2, 3, ...
  - They could be represented as (x, y) coordinates
- RL includes problems with **continuous states** (e.g., joint angles, blood glucose, etc.).
- This problem has discrete states.
- For simplicity, at first I recommend thinking of discrete states as being integers, 1, 2, ...

| 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 |
| 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 |

- The set of all possible states in an RL problem is called the **state set**, *S*.
- Here,  $S = \{1, 2, ..., 25\}$
- The state at time t is  $S_t$

| 1  | 2  | 3  | 4  | 5  |
|----|----|----|----|----|
| 6  | 7  | 8  | 9  | 10 |
| 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 |
| 21 | 22 | 23 | 24 | 25 |

### Gridworlds: Actions

- There are typically four actions, up, down, left, and right.
- The set of possible actions is called the **action set** and is denoted by  $\mathcal{A}$ .
- Here  $\mathcal{A} = \{up, down, left, right\}$
- The action at time t is  $A_t$

|      | up   |       |  |
|------|------|-------|--|
| left |      | right |  |
|      | down |       |  |
|      |      |       |  |
|      |      |       |  |

## Gridworlds: Transition Dynamics

• Taking an action that would cause the agent to leave the grid usually results in the agent not moving.

| up   |       |  |  |
|------|-------|--|--|
| left | right |  |  |
| down |       |  |  |
|      |       |  |  |
|      |       |  |  |

## Gridworlds: Transition Dynamics

- Taking an action that would cause the agent to leave the grid usually results in the agent not moving.
- Sometimes gridworlds contain "obstacles", which are cells in the grid that cannot be entered.



#### Gridworld: State Transition Dynamics

 Often the action the agent selects always succeeds (assuming the agent doesn't leave the grid).



#### Gridworld: State Transition Dynamics

- Often the action the agent selects always succeeds (assuming the agent doesn't leave the grid).
- Sometimes actions have a probability of failing or sending the agent in the wrong direction.



#### Gridworld: State Transition Dynamics

- The function describing how states transition given actions is called the **transition function**, *p*
- For all states s and s' and actions a:  $p(s, a, s') = \Pr(S_{t+1} = s' | S_t = s, A_t = a)$
- Here, p(13, up, 14) = 0.1



#### Gridworld: Rewards

- Whenever:
  - The state is  $S_t$
  - The agent selects action  $A_t$
  - The state transitions to  $S_{t+1}$
- The environment also emits a reward,  $R_t$ .
- The **reward function** *R* gives the expected reward given a state and action:  $R(s, a) = \mathbf{E}[R_t|S_t = s, A_t = a].$
- If rewards are deterministic given *s* and *a*, then the reward function specifies the reward:

$$R_t = R(S_t, A_t).$$

• We will focus on this simplified setting.



### Gridworld: Initial State Distribution

- The initial state  $S_0$  need not be deterministic.
- The initial state distribution  $d_0$  specifies the distribution of the initial state:

 $d_0(s) = \Pr(S_0 = s)$ 

| p = 0.5  |  | <i>p</i> = 0.25 |
|----------|--|-----------------|
|          |  |                 |
|          |  |                 |
|          |  |                 |
|          |  |                 |
|          |  |                 |
|          |  |                 |
|          |  |                 |
| p = 0.25 |  |                 |
|          |  |                 |

## Gridworld: Teriminal States

- The definition of **terminal states** varies by source.
- For this course, an episode ends when the agent enters a **terminal state**.
- Sometimes the goal is for the agent to avoid the terminal state
  - Episodes end when the robot falls over
- Sometimes the goal is for the agent to reach the terminal state
  - Episodes end when the robot escapes the maze
  - Sometimes these terminal states are called **goal states**.
- Sometimes the goal does not relate to terminal states.

| <br> |  |                   |
|------|--|-------------------|
|      |  |                   |
|      |  |                   |
|      |  |                   |
|      |  |                   |
|      |  | Terminal<br>State |

## Gridworld: Policy and Optimal Policies

• A **policy** is one way for an agent to select actions, and is denoted by  $\pi$ , where

$$\pi(s,a) = \Pr(A_t = a | S_t = s).$$

• The agent's goal is to find an **optimal policy**  $\pi^*$ , which is one that maximizes the expected discounted sum of rewards:

Note: There could be more than one optimal  $\pi^* \in \arg \max_{\pi} \mathbf{E} \left[ \sum_{\tau}^{\infty} \gamma^t R_t \right].$ 

- $\gamma \in [0,1]$  is the **reward discount parameter**.
- Smaller values of gamma result in a smaller weight on rewards that occur farther in the future.
  - Most people would take one cookie today rather than two cookies a year from now!

#### **Markov Decision Process**

- A Markov decision process (MDP) is a mathematical formulation of an RL problem.
- It is a tuple  $(S, \mathcal{A}, p, R, d_0, \gamma)$ 
  - ${\mathcal S}$  is the set of possible states or  ${\bf state \ set}$
  - ${\mathcal A}$  is the set of possible actions or  $\operatorname{action}\operatorname{set}$
  - *p* is the transition function, where  $p(s, a, s') = Pr(S_{t+1} = s' | S_t = s, A_t = a)$
  - *R* is the **reward function**, where  $R(s, a) = \mathbf{E}[R_t|S_t = s, A_t = a]$
  - $d_0$  is the initial state distribution, where  $d_0(s) = \Pr(S_0 = s)$
  - $\gamma \in [0,1]$  is the **reward discount parameter**
- A policy  $\pi$  characterizes action selection:  $\pi(s, a) = \Pr(A_t = a | S_t = s)$
- The agent's goal when faced with an MDP is to find an optimal policy:

$$\pi^* \in \arg\max_{\pi} \mathbf{E}\left[\sum_{t=0}^{\infty} \gamma^t R_t\right].$$

## Why "Markov" decision process?

- The Markov property means that the *future* is independent of the *past* given the *present*.
- The transition function satisfies the Markov property:  $p(s, a, s') = \Pr(S_{t+1} = s' | S_t = s, A_t = a)$ 
  - The distribution of the "next state"  $S_{t+1}$  does not depend on any of the states, actions, or rewards prior to  $S_t$  (when  $S_t$  is known)

## **Parameterized Policy**

- A parametric policy  $\pi$  is like a "parametric model" in supervised learning a policy that has policy parameters  $\theta$ .
  - This is akin to a parametric model for supervised learning that has *model* parameters w.

#### How to represent $\pi$ ?

- Tabular softmax:
  - Store a value  $\theta_{s,a}$  for each state s and action a

• 
$$\pi(s, a) = \Pr(A_t = a | S_t = s) = \frac{e^{\theta_{s,a}}}{\sum_{a'} e^{\theta_{s,a'}}}$$

- Note: Limited to problems with finite state and action sets
- Linear softmax:
  - Store a vector of weights  $\theta_a$  for each action a.
  - Define a feature generating function  $\phi$  that takes states as input
    - $\phi(s)$  is a vector of features for state s

• 
$$\pi(s,a) = \frac{e^{\theta a \cdot \phi(s)}}{\sum_{a'} e^{\theta a' \cdot \phi(s)}} = \frac{e^{\left(\sum_{i=1}^{m} \theta_{a,i}\phi_i(s)\right)}}{\sum_{a'} e^{\left(\sum_{i=1}^{m} \theta_{a',i}\phi_i(s)\right)}}$$

• Note: Limited to problems with finite action sets (but works with continuous states!)

#### How to represent $\pi$ ?

• Artificial Neural Network (with weights  $\theta$ )





## **Reward Design**

- The agent always starts in the top-left.
- The agent's goal is to reach the bottom right state (which is terminal)
- Actions succeed with probability 0.7
- Actions fail with probability 0.3
  - When actions fail, one of the other three actions is applied (each with probability 0.1)
- There are two obstacle cells (black).
- There is one water-filled cell (blue) that should be avoided.
- **Question**: How would you define rewards (and  $\gamma$ ) for this problem?



## **Reward Design**

- Do **not** reward the agent based on how you *think* it should solve the problem.
  - This often results in completely different undesirable behavior.
- Provide rewards based only on the main goal.
- Shaping rewards are rewards designed to encourage an agent towards specific behavior.
  - There are rules that can be followed to ensure they do not change optimal behavior.
  - Avoid shaping rewards otherwise!

## Example:



# End

